FP3 Complex Numbers

1. June 2010 qu. 3

In this question, w denotes the complex number $\cos \frac{2}{5} \pi+\mathrm{i} \sin \frac{2}{5} \pi$.
(i) Express w^{2}, w^{3} and w^{*} in polar form, with arguments in the interval $0 \leq \theta<2 \pi$.
(ii) The points in an Argand diagram which represent the numbers

$$
\text { 1, } \quad 1+w, \quad 1+w+w^{2}, \quad 1+w+w^{2}+w^{3}, \quad 1+w+w^{2}+w^{3}+w^{4}
$$

are denoted by A, B, C, D, E respectively. Sketch the Argand diagram to show these points and join them in the order stated. (Your diagram need not be exactly to scale, but it should show the important features.)
(iii) Write down a polynomial equation of degree 5 which is satisfied by w.
2. June 2010 qu. 5

Convergent infinite series C and S are defined by

$$
\begin{aligned}
& C=1+\frac{1}{2} \cos \theta+\frac{1}{4} \cos 2 \theta+\frac{1}{8} \cos 3 \theta+\ldots, \\
& S=\quad \frac{1}{2} \sin \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{8} \sin 3 \theta+\ldots .
\end{aligned}
$$

(i) Show that $C+\mathrm{i} S=\frac{2}{2-\mathrm{e}^{\mathrm{i} \theta}}$.
(ii) Hence show that $C=\frac{4-2 \cos \theta}{5-4 \cos \theta}$, and find a similar expression for S.
3. Jan 2010 qu. 4
(i) Write down, in cartesian form, the roots of the equation $z^{4}=16$.
(ii) Hence solve the equation $w^{4}=16(1-w)^{4}$, giving your answers in cartesian form.
4. Jan 2010 qu. 7
(i) Solve the equation $\cos 6 \theta=0$, for $0<\theta<\pi$.
(ii) By using de Moivre's theorem, show that

$$
\begin{equation*}
\cos 6 \theta \equiv\left(2 \cos ^{2} \theta-1\right)\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+1\right) . \tag{5}
\end{equation*}
$$

(iii) Hence find the exact value of

$$
\cos \left(\frac{1}{12} \pi\right) \cos \left(\frac{5}{12} \pi\right) \cos \left(\frac{7}{12} \pi\right) \cos \left(\frac{11}{12} \pi\right),
$$ justifying your answer.

5. June 2009 qu. 1

Find the cube roots of $\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}$, giving your answers in the form $\cos \theta+\mathrm{i} \sin \theta$, where $0 \leq \theta<2 \pi$.
6. June 2009 qu. 2

It is given that the set of complex numbers of the form $r \mathrm{e}^{\mathrm{i} \theta}$ for $-\pi<\theta \leq \pi$ and $r>0$, under multiplication, forms a group.
(i) Write down the inverse of $5 \mathrm{e}^{\frac{1}{3} \pi}$.
(ii) Prove the closure property for the group.
(iii) Z denotes the element $\mathrm{e}^{\mathrm{i} \gamma}$, where $\frac{1}{2} \pi<\gamma<\pi$. Express Z^{2} in the form $\mathrm{e}^{\mathrm{i} \theta}$, where $-\pi<\theta<0$.
7. June 2009 qu. 7
(i) Use de Moivre's theorem to prove that $\tan 3 \theta \equiv \frac{\tan \theta\left(3-\tan ^{2} \theta\right)}{1-3 \tan ^{2} \theta}$.
(ii) (a) By putting $\theta=\frac{1}{12} \pi$ in the identity in part (i), show that $\tan \frac{1}{12} \pi$ is a solution of the equation $\quad t^{3}-3 t^{2}-3 t+1=0$.
(b) Hence show that $\tan \frac{1}{12} \pi=2-\sqrt{3}$.
(iii) Use the substitution $t=\tan \theta$ to show that $\int_{0}^{2-\sqrt{3}} \frac{t\left(3-t^{2}\right)}{\left(1-3 t^{2}\right)\left(1+t^{2}\right)} \mathrm{d} t=a \ln b$,
where a and b are positive constants to be determined.
8. Jan 2009 qu. 2
(i) Express $\frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}-\mathrm{i}}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $0 \leq \theta<2 \pi$.
(ii) Hence find the smallest positive value of n for which $\left(\frac{\sqrt{3}+\mathrm{i}}{\sqrt{3}-\mathrm{i}}\right)^{n}$ is real and positive.
9. Jan 2009 qu. 8
(i) By expressing $\sin \theta$ in terms of $\mathrm{e}^{\mathrm{i} \theta}$ and $\mathrm{e}^{-\mathrm{i} \theta}$, show that

$$
\begin{equation*}
\sin ^{6} \theta \equiv-\frac{1}{32}(\cos 6 \theta-6 \cos 4 \theta+15 \cos 2 \theta-10) . \tag{5}
\end{equation*}
$$

(ii) Replace θ by $\left(\frac{1}{2} \pi-\theta\right)$ in the identity in part (i) to obtain a similar identity for $\cos ^{6} \theta$.
(iii) Hence find the exact value of $\int_{0}^{\frac{1}{4} \pi}\left(\sin ^{6} \theta-\cos ^{6} \theta\right) \mathrm{d} \theta$.
10. June 2008 qu. 4
(i) By expressing $\cos \theta$ in terms of $\mathrm{e}^{\mathrm{i} \theta}$ and $\mathrm{e}^{-\mathrm{i} \theta}$, show that $\cos ^{5} \theta \equiv \frac{1}{16}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)$. [5]
(ii) Hence solve the equation $\cos 5 \theta+5 \cos 3 \theta+9 \cos \theta=0$ for $0 \leq \theta \leq \pi$.
11. June 2008 qu. 7

The roots of the equation $z^{3}-1=0$ are denoted by $1, \omega$ and ω^{2}.
(i) Sketch an Argand diagram to show these roots.
(ii) Show that $1+\omega+\omega^{2}=0$.
(iii) Hence evaluate
(a) $(2+\omega)\left(2+\omega^{2}\right)$,
(b) $\frac{1}{2+\omega}+\frac{1}{2+\omega^{2}}$.
(iv) Hence find a cubic equation, with integer coefficients,
which has roots $2, \frac{1}{2+\omega}$ and $\frac{1}{2+\omega^{2}}$.
12. Jan 2008 qu. 4

The integrals C and S are defined by

$$
C=\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x} \cos 3 x \mathrm{~d} x \text { and } S=\int_{0}^{\frac{1}{2} \pi} \mathrm{e}^{2 x} \sin 3 x \mathrm{~d} x
$$

By considering $C+\mathrm{i} S$ as a single integral, show that

$$
C=-\frac{1}{13}\left(2+3 \mathrm{e}^{\pi}\right), \quad \text { and obtain a similar expression for } S .
$$

(You may assume that the standard result for $\int \mathrm{e}^{k x} \mathrm{~d} x$ remains true when k is a complex constant, so that $\int e^{(a+i b) x} d x=\frac{1}{a+i b} e^{(a+i b) x}$
13. Jan 2008 qu. 7
(i) (a) Verify, without using a calculator, that $\theta=\frac{1}{8} \pi$ is a solution of the equation $\sin 6 \theta=\sin 2 \theta$.
(b) By sketching the graphs of $y=\sin 6 \theta$ and $y=\sin 2 \theta$ for $0 \leq \theta \leq \frac{1}{2} \pi$ or otherwise, find the other solution of the equation $\sin 6 \theta=\sin 2 \theta$ in the interval $0<\theta<\frac{1}{2} \pi$.
(ii) Use de Moivre’s theorem to prove that $\sin 6 \theta \equiv \sin 2 \theta\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+3\right)$.
(iii) Hence show that one of the solutions obtained in part (i) satisfies $\cos ^{2} \theta=\frac{1}{4}(2-\sqrt{2})$, and justify which solution it is.
14. June 2007 qu. 1
(i) By writing z in the form $r \mathrm{e}^{\mathrm{i} \theta}$, show that $z z^{*}=|z|^{2}$.
(ii) Given that $z z^{*}=9$, describe the locus of z
15. June 2007 qu. 5
(i) Use de Moivre's theorem to prove that $\cos 6 \theta=32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1$.
(ii) Hence find the largest positive root of the equation $64 x^{6}-96 x^{4}+36 x^{2}-3=0$, giving your answer in trigonometrical form.
16. June 2007 qu. 7
(i) Show that $\left(\mathrm{z}-\mathrm{e}^{\mathrm{i} \phi}\right)\left(\mathrm{z}-\mathrm{e}^{-\mathrm{i} \phi}\right) \equiv z^{2}-(2 \cos \phi) z+1$.
(ii) Write down the seven roots of the equation $z^{7}=1$ in the form $\mathrm{e}^{\mathrm{i} \theta}$ and show their positions in an Argand diagram.
(iii) Hence express $z^{7}-1$ as the product of one real linear factor and three real quadratic factors.
17. Jan 2007 qu. 3
(i) Solve the equation $z^{2}-6 z+36=0$, and give your answers in the form $r(\cos \theta \pm \operatorname{isin} \theta)$, where $r>0$ and $0 \leq \theta \leq \pi$.
(ii) Given that Z is either of the roots found in part (i), deduce the exact value of Z^{-3}.
18. Jan 2007 qu. 8
(i) Use de Moivre's theorem to find an expression for $\tan 4 \theta$ in terms of $\tan \theta$.
(ii) Deduce that $\cot 4 \theta=\frac{\cot ^{4} \theta-6 \cot ^{2} \theta+1}{4 \cot ^{3} \theta-4 \cot \theta}$.
(iii) Hence show that one of the roots of the equation $x^{2}-6 x+1=0$ is $\cot ^{2}\left(\frac{1}{8} \pi\right)$.
(iv) Hence find the value of $\operatorname{cosec}^{2}\left(\frac{1}{8} \pi\right)+\operatorname{cosec}^{2}\left(\frac{3}{8} \pi\right)$, justifying your answer.
19. June 2006 qu. 2
(a) Given that $z_{1}=2 \mathrm{e}^{\frac{1}{6} \pi \mathrm{i}}$ and $z_{2}=3 \mathrm{e}^{\frac{1}{4} \pi \mathrm{i}}$, express $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $0 \leq \theta<2 \pi$.
(b) Given that $w=2\left(\cos \frac{1}{8} \pi+i \sin \frac{1}{8} \pi\right)$, express w^{-5} in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $r>0$ and $0 \leq \theta<2 \pi$.
20. June 2006 qu. 7

The series C and S are defined for $0<\theta<\pi$ by

$$
\begin{aligned}
& C=1+\cos \theta+\cos 2 \theta+\cos 3 \theta+\cos 4 \theta+\cos 5 \theta \\
& S=\quad \sin \theta+\sin 2 \theta+\sin 3 \theta+\sin 4 \theta+\sin 5 \theta
\end{aligned}
$$

(i) Show that $C+\mathrm{i} S=\frac{\mathrm{e}^{3 \mathrm{i} \theta}-\mathrm{e}^{-3 \mathrm{i} \theta}}{\mathrm{e}^{\frac{1}{2} \mathrm{i} \theta}-\mathrm{e}^{-\frac{1}{2} \mathrm{i} \theta}} \mathrm{e}^{\frac{5}{2} \mathrm{i} \theta}$.
(ii) Deduce that $C=\sin 3 \theta \cos \frac{5}{2} \theta \operatorname{cosec} \frac{1}{2} \theta$ and write down the corresponding expression for S.
(iii) Hence find the values of θ, in the range $0<\theta<\pi$, for which $C=S$.
21. Jan 2006 qu. 4
(i) By expressing $\cos \theta$ and $\sin \theta$ in terms of $\mathrm{e}^{\mathrm{i} \theta}$ and $\mathrm{e}^{-\mathrm{i} \theta}$, or otherwise, show that

$$
\begin{equation*}
\cos ^{2} \theta \sin ^{4} \theta=\frac{1}{32}(\cos 6 \theta-2 \cos 4 \theta-\cos 2 \theta+2) \tag{6}
\end{equation*}
$$

(ii) Hence find the exact value of $\quad \int_{0}^{\frac{1}{3} \pi} \cos ^{2} \theta \sin ^{4} \theta d \theta$.
22. Jan 2006 qu. 5
(i) Solve the equation $z^{4}=64(\cos \pi+\mathrm{i} \sin \pi)$, giving your answer in polar form.
(ii) By writing your answer to part (i) in the form $x+\mathrm{i} y$, find the four linear factors of $z^{4}+64$.
(iii) Hence, or otherwise, express $z^{4}+64$ as the product of two real quadratic factors.

